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CRITICAL STRESS OF THIN-VALLED CYLINDERS IN AXIAL COMPRESSION 

By S. B. Batdorf, Murry Schildcrout, and Manuel Stein 

SUMMARY 

Empirical design curves are presented for the critical 
stress of thin-vailed cylinders loaded in axial compression. 
These curves are plotted in terms of.the nondimensional 
parameters of small-deflection theory and are compared with 
theoretical curves derived for the "buckling of cylinders with 
simply supported and clamped edges. An empirical equation is 
given for the "buckling of cylinders having a length-radius 
ratio greater than ahout 0.75« 

The test data obtained from various sources follow the 
general trend of the theoretical curve for cylinders with 
clamped edges, agreeing closely with the theory in the case of 
short cylinders, "but falling considerably "below the theoretical 
results for long cylinders. The discrepancy in the oase of 
long cylinders increases with increasing values of the ratio 
of.radius to wall thickness. Plotting curves for different 
values of this ratio reduces the scatter in the test da,ta 
and a certain degree of correlation with theory is achieved« 
Advantage is taken of this correlation to ohtain estimated 
design curves for cylinders with simply supported edges, for 
which little experimental information is available. 

REVIEW OF PREVIOUS WORK ON PROBLEM 

Solutions to the prohlem of the determination of the critical^ 
stress of thin-walled cylinders subjected to axial compression 
have "been presented "by a large number of authors. Southwell, 
Timoshenko, Flügge, and numerous other authors have obtained 
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theoretical solutions "by the use of the small-deflection theory. 
(See, for example, references 1 to k.)    The value given "by the 
small-deflection theory for the "buckling stress of a thin-walled 
cylinder of moderate .length having simply supported edges is 

g-,  £*•_, 0,608 B (1) 

where 

o critical compressive stress 

E Young's modulus • 

t wall thickness of cylinder 

r radius of cylinder ^ 

H   PoissonTe ratio (in the present paper n is  taken to be 0.316 
whenever a value is assigned to it) 

Experiments (references 5 to 10) have shown that the actual 
critical stress is much lower than that predicted "by equation (l). 
Except in the case of short cylinders, the experiments usually 
give values only 15 to 50 percent c.f that predicted theoretically; 
moreover, the observed "buckle pattern is different from that 
predicted on the "basis of theory. A number of attempts have "been 
made to explain these discrepancies theoretically. Flügge (refer- 
ence 3) considered the deviation of the actual edge supports.from' 
the support conditions assumed, in the theoretical treatment. Donnoll 
(reference 5) and alBO Flügge considered the initial deviation from 
the perfect cylindrical shape. Neither of the two attempted 
explanations satisfactorily accounts for the discrepancy existing 
"between the theoretical .and expei'imental values of .the "buckling 
stresses of cylinders. 

Von Kanaan andTsien (reference .11) introduced a large- 
deflection'theory to accoxart for the "buckling "behavior of long 
cylinders. They showed that a long cylinder can "be in equilibrium 
in a buckled state at a stress, that is much smallo-r than the'critical 
stress of small-deflection theory and also succeeded'in accounting 
for the buckle pattern observed in the early stages of buckling. 
Reference 11 suggested that when a cylinder has an initial imperfec- 
tion or is subjected to a shock, it might pass into one of these 
buckled states without ever having reached the critical load given • 
by equation (1). Based on the same approach, a theory for the 
buckling stresses of perfect cylinders was proposed by Tsien 
(reference 12), which gave 
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°x =*0''370 =£ (loading "by rigid screw-power testing machine)   (2) 

ax = O.238 5i (loading by.ideal hydraulic testing machine or 
r    dead weight) (3' 

The large-deflection theories fail in two respects to describe 
adequately the buckling behavior of actual cylinders. First, the 
theories are formulatod only for long cylinders; equations (2) and (3) 
seriously underestimate the critical stress of very short cylinders. 
Second, even for long cylinders, attempts to determine experi- 
mentally the numerical coefficient C in the buckling formula 

Or a GB£ (it-) 
X     r> 

have resulted in appreciable experimental scatter. The experimental 
scatter is due at least in part to the initial imperfections of 
construction always present in real cylinders. (See fig. 1 taken 
from reference 13, fig. 18.) 

In the. absence of a complete and satisfactory theoretical 
solution for the critical stress of cylinders, a number of authors 
have proposed empirical formulas derived from test data (refer- 
ences 6  to 8).. One such formula, which takes into account the 
length of the cylinder, is due to Ballerstedt and Wagner (reference 8): 

^=3-3"12 "E" (£)  +o-2i (57 

The first parameter in this equation ( ~)     is appropriate for flat 
sheet and the second parameter ~ is included to take into account 

r 
the effect of curvature. More recently Kanemitsu and Nojima 
(reference 9) compiled all available previous experimental results 



MCA TN No. 13^3 

and conducted a number of teste of their own. The formula of 
Wagner and Bailerstedt was modified in reference 9 to "bring it into 
"better agreement with experiment as follows: 

|» = O-KL)1
'
3
 
+ '(r)1'6 (€) 

"Within its range of application 

fo.K |< 1.5;  500 < f <3000j 

equation (6) is in considerably "better agreement with experiment 
than equation (5) "but, because of the change in the exponents of 
the parameters, equation (6) does not have any rational basis and 
must be regarded as purely empirical. A complete divorce of theory 
and experiment, however, cannot be regarded as a satisfactory 
permanent settlement of the problem, and the present report attempts 
to bring theory and experiment into reasonable accord. 

CONTRIBUTION OF PRESENT PAPER 

In the present paper the available test data for critical 
stresses of cylinders are reexamlned. and theoretical results are 
used as a guide in fairing the curves, in extending the range of 
validity of the existing empirical results, and in achieving a 
more rational Interpretation of the test data. Star this purpose 
the test data are plotted in terms of the parameters of cylinder 
theory and are compared with theoretical results derived in the 
appendix on the basis of small-deflection theory. 

The cylinder-theory parameters used are 

.2 

*x 

and 

D*2 

lu/TTTS" z = ^/i-, 
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where 

D   flexural stiffness of plate per unit length 1 —; x— 
\12(1 - n2), 

L   length of cylinder 

Z   curvature parameter 

k_  critical stress coefficient appearing in the equation 

cr„ = -tS 
le-i^D 

x. 2 
L t 

The experimental data are used as the principal guide in 
determining the critical compressive stresses of long cylinders 
(large values of Z) and the theoretical results are used mainly 
to supplement the test data in determining the critical stress 
of very short cylinders (small values of Z). The experimental 
scatter is reduced "by. presenting different curves for cylinders . 
with different values of the ratio of radius to wall thickness 
on the assumption that for' long cylinders this ratio furnishes some 
indication of the initial imperfections of the cylinder. Although 
these curves were determined partly on the "basis of theoretical 
considerations, they are for convenience referred to herein as 
empirical curves. 

RESULTS AND CONCLUSIONS 

The critical compressive stress for-cylinders is given by- 
the equation 

°*:^T        . ."   "   m 

where the values of .k^ may he obtained from .figure 2 for 
cylinders with either clamped or simply supported edges. The 
design curves for cylinders with clamped edges are established 
by the test results .reported in references 5 to 9. (See fig. 3.) 
Each curve was faired through a series of test points which were 
plotted for cylinders with nearly the same ratio of radius to wall 
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thickness r/t. The estimated (dashed) parts of the design curves 
for simple support were obtained by fairing "between the known 
experimental curves for long cylinders (large values of Z), which 
according to theory should "be the same whether the cylinders have 
simply supported or clamped edges, and the theoretical curves for 
very short cylinders (small values of Z). 

For long cylinders the "buckling stress is considerably below 
the theoretical "buckling stress* the amount of the discrepancy 
depending on the ratio of radius to wall thickness. For very short 
cylinders the values of the critical stresses approach those for 
flat plates (simply supported ends, kx = 1; clamped ends, 
^x = ^)t  *"or which the agreement "between theoretical and experimental 
results is known to "be good. The general trend of each empirical 
curve is similar to that of the theoretical curve, indicating the 
existence of a certain degree of correlation "between theory and 
test data. 

At large values of Z the curves for kz "become straight 
lines given "by the formula 

•. kx . i.r>cz (8) 

where C depends on the ratio of radius to wall thickness of the 
cylinders in the manner shown in figure h.    From equations (7) 
and (8) the following expression for the critical stress is obtained 

•ffx-caüi .(9) 

Equations (8). and (9) may "be used when the length of the cylinder 
is more than a"bout 3A of "the radius. The empirical curves of 
reference 10 indicate that the critical stress is substantially 
independent of length when the length is greater than about J>fh  of 

the radius. ($hlB  result may "be checked "by noting that for Z > 0.5 •% 

the experimental curves of figure 2 are substantially straight lines 
of unit slope.) 

In figure 5, the empirical formula of Kanemitsu and Nojima 
(equation (6) of the present paper, and the "best previously published 
formula for the "buckling of cylinders) is plotted in terms of the 
parameters k^ and Z. The curves are cut off at those values of Z 
corresponding to the lower limits of the range of dimensions within 
which the formula was intended to apply. In general^ for the range 
covered, the curves are in.reasonable- agreement with the test data 
and with the curves of the present paper for cylinders with clamped 
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edges. The practical importance of the present approach lies in the 
fact that the use .of- the theoretical parameters and the theoretical 
solutions as a guide in' fairing the curves permits the removal of 
the. lower limits on these-curves and also permits estimated curves 
to "be drawn, for the "buckling stresses for simply supported cylinders, 
although experimental data are 'available only for cylinders with 
clamped edges. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., March 20, 19^7. 
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APPENDIX 

THEORY FOE CYLINDERS BUCKLING UNDER 

AXIAL COMPRESSION  • 

Symbols 

m positive integer 

r radius of cylinder 

t wall thickness of cylinder 

v radial component of displacement, positive outward 

x axial coordinate of cylinder 

y circumferential coordinate of cylinder 

Et3 

12 (1 - n2). 

C coefficient appearing in cr^. = CE - 

D flexural stiffness of plate per unit length 

E Young* s modulus 

L length of cylinder 

Q operator on v defined in appendix 

/  p    ,. ,       o  
7, curvature parameter I ——vl - M  or (—\   —VI - n' 

Vrt \r/ t 

a^   coefficient of deflection function 

kx  critical-compressive-stress coefficient appearing in the 

formula cr„ - *2£ D 

L2t 

\2   '  Q2|
2 '  12Z2(m - l\h 

V    deflection function defined in the appendix 

•^•-«^»J+affiV^-fr-D % 
X 
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X   half wave length of tnicld.es in circumferential direction 

M.   Poisson's ratio 

ax       critical axial compressive stress 

V"^  the inverse of V^ defined by V^V^ B w 

Theoretical Solution 

The critical compressive stress at -which bucld-ing occurs in 
a cylindrical shell may "be obtained "by solving the equation of 
equilibrium. 

Equation of equilibrium.- The equation of equilibrium for 
a slightly bucfrTed cylindrical shell under axial compression is 
(reference lb) 

•where x is the coordinate in the axial direction- and y is the 
coordinate In the circumferential direction. The accompanying 
figure shows the coordinate system used in the analysis. 
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Dividing through eq.us.tion (Al) "by D gives 

•where the dimensionless parameters Z and k^ are defined by 

Z-^l-n2 

X
        D*2 

The equation of equilibrium may be represented "by 

Qw e 0 (A3) 

•where Q is defined "by 

U  12Z2 _lt o^   .  rt2 52 

Method of solution.- Equation (A2) may he solved "by use of 
the Galerkin method as outlined in reference 15. When this method 
is applied, the deflection v Is expressed in series form as 
follows 

J_ 

The set of functions Tm are chosen to satisfy the boundary 
conditions but need not satisfy the equation of equilibrium. The 
coefficients a^ are determined by the equations 

2X      L 
f     f    V-.Qwdxdy = 0  (m- 1,2,3, ... ,5) (A5) 

In the. present paper the deflection functions .-were chosen to 
satisfy the folio-wing conditions on v at the ends of the cylinder: 
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For simply supported edges w «= ^-~ = 0 
02/= 

For clamped edges        v » 23£ =» 0 x 

Simply • supported edges. - An expansion for v that is sinusoidal 
iii the circumferential direction and perfectly general (subject to 
the "boundary conditions for simple support) in the axial direction is 

w = sin Y^- ^>~ am sin -=— (A6) 

i 

•where X, iB the half wave length of the "buckles in the circum- 
ferential direction. Equation (A6) is equivalent to equation (A^) if 

Vm = sin &  sin 5ES (AT) 
A.       L 

Substitution of expressions (A6) and (A7) into equation (A5) and 
integration over the limits indicated give 

0   o9 12Z^ 
m2kx= (ß

2 + m
2)2+-r7-T—-— (AS) 

rtVm2 + ß2}2 

•where 

. ß =i  ^   (m, 1, ß, 3,...) 

The minimum value of kj for a given 2 is found "by assuming 
a value for m and minimizing kx -with respect to ß. This pro- 
cedure is followed for various values of m until a minimum k^ is 
reached. Figure 2 presents the theoretical critical stress coeffi- 
cients for cylinders with simply supported edges subjected to H.V-TW.1 
compression. 

Clamped edges.- A procedure similar to that used for cylinders 
with simply supported edges may he followed for cylinders with 
clamped edges. The deflection function used is the following series 

*y (Cos <m -l)rtx - cos ^ * l)rt*\ 

\     L L   / 

v - sln f i_ MCOS V  L    " COS    T    /    ' (A9) 



12 NACA TUT Wo. 13^3 

Each term of this series satisfies the conditions on v at the 
e&gQS. The function Ym is nov defined as 

Y_ = sin jff(ooB (SLZ-llS _ cos ÖLtJJsÜ       (m . l} a, 3,   .   .   .)    (A10) m 

After the same operations are carried out for clamped edges as 
those carried out for the case of simply supported edges, the following 
equations result: 

For m B 1 

For m = 2 

aa. (2Mi + M3) - «feM3-= 0 

&2  (M2 + M 4)  - a^JM^ s 0 

For m = 3, ^, 5, 
> 

«m (%. + %+s) " ^-A - am+aMm+s = 0 

where 

% a   [On - l)2 + ß< 
2   •          12Z2(m - l)^ , ,0 

+ —    g   •  ^--2 - (a - .I)2 fcjc 
A1* gm - l)2 + ß?j 

(All) 

(n - 1,   2,  3, •'.   •   •) 

These equations have a solution if the following infinite determinant 
vanishes: 
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m=l 2M!+Mo      ° -M3        0- 0          0          0 0    .     . 

ms2 0       %*Mit 0        -Mij. 0           0           0 0 
m»3 -M3          0   • M^4M-      0. ->    J -M^      o        o 0 

TOsk 0          -Mfc 0      Mj^+Mg 0         -Mg        0 0 

m=5 o        o- -VL        0 Vtyüj      Q         -H_ 0 

m=6 0            0 0        -Mg 0      Mg-fMg      0 -Mg      . 

nt=7 0            0 o     • 0 -M^       0      My-lMg 0 

Efc8 0            0 0           0 0         -Mg        0 Mg4*L0 

(A12) 

If the rows and columns are rearranged the infinite determinant can 
lie factored into the product of two infinite subdoterminanta. The 
critical stresses may then be obtained from the following equation: 

Efcal 

m=3 

m=:7 

aii-ri^ -M3   0   0,.. 

-M3  M3-(Mr -M^   0... 

0    -M5 ItyMr,    -My.. 

0     0   -tL. M?+WL. 

0., 3?l=2 0 0 0 

i&=k 0 0 0 

IQ=6 0    • 0 0 

m=8 0 0 0 

0. p 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

# . ^ m                 0 

Mg^ -Mi, 0 0 

0... -M^ M^-tMg -Mg 0 
0...   0   -Mg Mg4Mg -Mg 

0. .   0    0   -Mg Mg-%0 •   •   m 

= 0 £13) 

The infinite subdeterminant involving terms with odd subscripts 
corresponds'to a symmetrical buckling• pattern, (a bucfcling'pattern 
symmetrical about the plane perpendicular to and bisecting the axLs 
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of the cylinder). The infinite subdeterminant Involving terms with 
even subscripts corresponds to an antisymmetrical buckling pattern. 
For brevity these subdeterminants will be referred" to as the odd 
determinant and the even determinant, respectively. 

The first approximation is 

Odd determinant: 2% •+ Mo = 0 (Al^) 

Even determinant: M2 + M^ n 0 (AI5) 

The second approximation Is 

Odd determinant: 2^(1*3 + Kb) + M^Mc = 0 • (AI6) 

Even determinant: Mg(lfy, + Mg) + M^Mg a 0 (AI7) 

These equations shov that for a selected value of the curvature 
parameter Z the critical buckling stress of a cylinder depends 
upon the circumferential -wave length. Since a structure "buckles at 
the lowest stress at which instability can occur, kx is minimized 
with respect to the wave length by substituting values of 0 into 
the equations until the minimum - k^. can be obtained from a plot 
of kx against ß. For a given Z the lower of the two values 
obtained from equations (Alif-) and (AI5) is the first approximation 
of the critical buckling stress and, similarly, the lower of the 
two values of kx obtained from equations (A16) and (AT?) is the 
second approximation of the critical buckling stress. 

Figure 2 presents the theoretical critical stress coefficients 
for cylinders with clamped edges in axial compression as obtained 
from the second approximation, together with the exact curve for 
the case of simply supported edges. Although this solution is ah 
upper-limit solution, the second approximation for the critical 
stress coefficient of a cylinder with clamped edges must be very 
close to being exact for intermediate and large values of Z 
because it is almost identical with the exact solution for a 
cylinder with simply supported edges, and the critical stress of 
a cylinder with clamped edges cannot be less than the critical 
stress for a cylinder with simply supported edges. For values of 
Z approaching zero, the accuracy of the second approximation is 
indicated by the fact that it coincides with the known exact 
solution (kjc » k)  for a long flat plate with clamped edges. 
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Figure  3.- Comparison  of test  results  with design  curves 
recommended  for  cylinders  with clamped edges. 
(Data  from references  5  to  9.) 
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